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Abstract

In this paper, we present a finite element formulation for describing the large deformation torsional response of

biphasic materials, with specific application to prediction of nonlinear coupling between torsional deformation and fluid

pressurization in articular cartilage. Due to the use of a cylindrical coordinate system, a particular challenge arises in the

linearization of the weak form. The torsional axisymmetric case considered gives rise to additional geometric terms,

which are important for the robustness of the numerical implementation and that would not be present in a Cartesian

formulation. A detailed derivation of this linearization process is given, couched in the context of a variational for-

mulation suitable for finite element implementation. A series of numerical parametric studies are presented and

compared to experimental measurements of the time dependent response of cartilage. � 2002 Elsevier Science Ltd. All

rights reserved.
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1. Introduction

Articular cartilage is a porous, hydrated material that exhibits flow-dependent viscoelastic effects when
loaded, including interstitial fluid pressurization and fluid flow (Mow et al., 1980; Soltz and Ateshian, 2000,
1998). Compositionally, articular cartilage consists of a polymeric solid phase of largely collagen and
proteoglycan macromolecules, and interstitial fluid phase consisting largely of water and dissolved solutes.
The mechanical behaviors of this tissue have been well described by a multiphasic theoretical formulation
(Bowen, 1998; Truesdell and Toupin, 1960) that accounts for mechanical interactions between these solid
and fluid phases (Mow et al., 1980). Analytical solutions of the biphasic theoretical model have been shown
to capture important physical characteristics of cartilage when subjected to compressive loading in sim-
plified one and two-dimensional axisymmetric configurations (Mow et al., 1980; Armstong et al., 1986;
Mak et al., 1987). Finite element implementations of the linear biphasic theoretical model or linear
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poroelasticity have also been developed to study articular cartilage in more complex loading configurations
and sample geometries (Spilker et al., 1990; Suh et al., 1991; Levenston et al., 1998; Wayne et al., 1991). All
of these codes have demonstrated an ability to predict important flow-dependent viscoelastic behaviors for
cartilage when subjected to compressive loading.

Cartilage is also known to exhibit significant viscoelastic effects in response to torsional shear (Hayes and
Mockros, 1973; Zhu et al., 1995; Setton et al., 1995). Within linear theory, the solid matrix of cartilage is
predicted to experience zero dilatation for small angles of deformation, and so will not experience any
associated flow-dependent effects such as fluid pressurization and fluid flow. Thus, the viscoelastic effects
observed in torsional shear have been attributed to a flow-independent mechanism arising from physical
interactions between polymeric molecules of the solid phase (Hayes and Mockros, 1973; Mak, 1986).
Recently, experimental studies have demonstrated that a significant, transient normal force may be gen-
erated in articular cartilage when subjected to pure torsion in either steady shearing or stress-relaxation
testing (LeRoux et al., 1999, 2000). In these experiments, cylindrical axisymmetric samples of articular
cartilage were subjected to torsional displacements while the axial, or normal force was recorded for the
duration of this prescribed torsional loading. A significant, nonzero normal stress was generated in re-
sponse to torsional deformation that is hypothesized to contribute to load-bearing mechanisms for the
tissue. The kinetics of the normal force transients are similar to the shear stress transients in the stress-
relaxation experiment (LeRoux et al., 1999), suggesting that a coupling mechanism exists between visco-
elastic effects in pure torsion and normal stress. In linear theory, the rotation is always decoupled from
radial and axial displacements, however, with the result that a linear formulation of the pure torsion
problem always generates zero dilatation and zero pressure in a biphasic material. In this paper, we present
a novel finite element formulation of the finite deformation axisymmetric torsional problem to investigate
the coupling between torsional and normal stress effects in a biphasic material.

In applying the finite element technique to a biphasic analysis, at least three different types of formu-
lations have been implemented: two field solid displacement-fluid velocity penalty formulations (Spilker
et al., 1990; Suh et al., 1991); two field solid displacement-fluid pressure formulations (Wayne et al., 1991);
and multifield variational formulations (Levenston et al., 1998) with a Lagrangian multiplier (Almeida,
1995) or augmented Lagrangian multiplier approach. In the current study, a two field displacement–
pressure formulation (u–p formulation) is used to study the torsional behavior of biphasic soft tissues,
which precludes the need to invoke penalizations or Lagrange multipliers. In contrast to most of the above
studies, we consider the full finite strain response of the solid matrix in this study. A challenge in the tor-
sional axisymmetric finite element formulation we consider comes from the linearization of the weak form.
In a curvilinear coordinate system, the process not only involves the linearization of the components of
relevant tensors but also the linearization of variable bases, which will generate additional terms in the
geometric stiffnesses (a simplified treatment of these terms is presented in (Celigoj, 1998). To our knowl-
edge, these terms have not been incorporated in previous finite element formulations describing the finite
deformation behavior of biphasic materials. Omitting these terms in the torsional problem will, in general,
cause a loss of quadratic rates of convergence of the Newton–Raphson method while solving the nonlinear
system of discrete equations. In the current work, we present a detailed derivation of the formulation and
its linearization, and demonstrate that the resulting numerical tool can be used to predict the coupling
between pure torsion and normal stress effects in articular cartilage.

2. Continuum mechanics preliminaries

A biphasic material is considered to consist of two intrinsically incompressible and immiscible phases,
denoted by a ¼ s, f for solid and fluid phases respectively (Mow et al., 1980). In terms of Cauchy stress, the
momentum equation for the ath phase, in the absence of body forces and inertia effects, is given by
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r � ra þ pa ¼ 0 ð1Þ

with the stress tensor for each individual phase defined as

rs ¼ �/spI þ re;

rf ¼ �/fpI ;
ð2Þ

where /a denotes the current volume fraction of the ath phase, p denotes the fluid pressure and re is the
effective stress tensor for the solid matrix of the material. pa is a diffusive drag interaction term, defined as

pf ¼ Kðvf � vsÞ ¼ �ps; ð3Þ

where K is a diffusive drag tensor (Mow et al., 1980). In this formulation, the diffusive drag is related to the
hydraulic permeability tensor as k ¼ ð/fÞ2K�1. In a u–p formulation, the balance of linear momentum for
the solid and fluid phases may thus be written as

rij;j � gikp;k ¼ 0; ð4Þ

vðf=sÞi ¼ �kjip;j; ð5Þ

where rij are the contravariant components of the effective stress in the solid phase (the superscript e has
been dropped for convenience), p is the fluid pressure, gik are the contravariant components of the metric
tensor, and vðf=sÞi :¼ /fðvðfÞi � vðsÞiÞ are the contravariant components of the relative fluid velocity. In Eqs.
(4) and (5), and in the sequel we use indicial notation, with repeated indices indicating implied summation
and the use of the semicolon via ð�Þi;j indicating covariant differentiation in a curvilinear coordinate system
(in this case, this coordinate system will eventually correspond to an axisymmetric one).

The balance of mass for the ath phase is described by

_qqa þ qavðaÞi;i ¼ 0: ð6Þ

If one assumes saturation of the biphasic medium, as well as incompressibility, one also obtains:

/f þ /s ¼ 1;
ca ¼ ca

0 ;
ð7Þ

where ca
0 denotes the reference material density, or intrinsic density, for each phase. Combination of Eqs. (6)

and (7) gives rise to the following continuity equation for the biphasic material

ð/svðsÞi þ /fvðfÞiÞ;i ¼ 0 ð8Þ

which is the constraint that typically appears in two field penalty formulations. By contrast, combining the
momentum equation (8) and continuity equation (5) for the fluid phase leads to the equation used in a u–p
formulation such as is employed here,

ðvi � kijp;jÞ;i ¼ 0; ð9Þ

where vi are the contravariant components of the solid phase velocity (again for simplicity, the superscript s
has been dropped). In our formulation, linear permeability is assumed, i.e., the permeability tensor is
defined as k ¼ k0I with k0 taken to be a constant and I denoting the second order identity tensor.
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3. The biphasic weak form and its linearization

In what follows, let X denote the current configuration of a biphasic body and �XX :¼ X þ oX indicate the
closure of X, where the boundary oX can be partitioned as oX ¼ Cr þ Cu and oX ¼ Cp þ CQ. We further
assume that Cr \ Cu ¼ ; and Cp \ CQ ¼ ; (here, ; denotes the null space). The notations Cr and Cu denote
the regions where stresses and displacements (respectively) are specified on the boundary; correspond-
ingly, Cp and CQ are the regions where fluid pressures and fluxes are prescribed. The smooth manifold of
admissible solutions is then defined by

Q :¼ fu� p : X0 ! XjujCu ¼ �uu pjCp ¼ �ppg: ð10Þ

Correspondingly, we define V 2 H 1ðXÞ as the space of test functions associated with Q, via

V :¼ fw� q : X0 ! XjwjCu ¼ 0 qjCp ¼ 0g: ð11Þ

Application of the standard weighted residual procedure to Eqs. (4) and (9) leads to the following (coupled)
weak formZ

X
wi;jrij dX þ

Z
X
wkgikp;i dX ¼

Z
Cr

witi dC ð12Þ

and Z
X
qvi;i dX þ

Z
X
q;ikijp;j dX ¼ �

Z
CQ

qQdC; ð13Þ

where w and q are the trial functions standing in the weighting space, and ti ¼ rijnj and Q ¼ �kijp;jni are the
prescribed traction and fluid flux fields, respectively. In subsequent developments, it will prove convenient
to summarize the coupled system summarized by Eqs. (12) and (13) via

Gint
1 þ Gint

2 ¼
Z

Cr

witi dC;

Gint
3 þ Gint

4 ¼ �
Z

CQ

qQdC;
ð14Þ

where Gint
1 and Gint

2 refer to the first and second terms in Eq. (12), while Gint
3 and Gint

4 are the first and second
terms in Eq. (13).

When a Newton–Raphson procedure is chosen to solve this problem, a linearization of the weak form is
required. Specifically, given an iterate i for the solution, denoted by ðui; piÞ, we solve linearized systems for
displacement and pressure increments ðDu;DpÞ according to

Gint
1 ðui; piÞ þ DGint

1 ðui; piÞ þ Gint
2 ðui; piÞ þ DGint

2 ðui; piÞ �
Z

Cr

witi dC ¼ 0;

Gint
3 ðui; piÞ þ DGint

3 ðui; piÞ þ Gint
4 ðui; piÞ þ DGint

4 ðui; piÞ þ
Z

CQ

qQdC ¼ 0;
ð15Þ

where DH denotes the sum of the directional derivatives of the functional H in the directions of Du and Dp
via

DH :¼ DuH þ DpH ¼ d

d� �¼0
Hðu

���� þ �Du; pÞ þ d

d�

����
�¼0

Hðu; p þ �DpÞ: ð16Þ
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Following solution of Eq. (15) for Du and Dp, the solution is updated via

uiþ1 ¼ ui þ Du; piþ1 ¼ pi þ Dp ð17Þ

and iterations on i are continued until convergence is obtained. A key intricacy of the implementation we
present is the proper calculation of the linearizations indicated in Eq. (15). We now consider the lineari-
zation of these terms in detail.

In terms of the material configuration, Gint
1 can be rewritten as

Gint
1 ¼

Z
X0

wi;js
j
i dX0 ¼

Z
X0

wi;IF iJ S
JI dX0; ð18Þ

where SJI are the contravariant components of the second Piola–Kirchhoff stress tensor, sji ¼ Jrji are the
components of the Kirchhoff stress tensor, and J is the Jacobian of the deformation gradient. As em-
phasized in (Marsden and Hughes, 1994), the definition of deformation gradient is in terms of the partial
derivative instead of a covariant derivative, which is expressed as

F iJ ¼
oxi

oX I
ðX Þ; ð19Þ

where X I and xi denote the reference and spatial coordinate systems respectively. For a cylindrical coor-
dinate system, with ðR;H; ZÞ and ðr; h; zÞ denoting the reference and spatial coordinates, the deformation
gradient in matrix form is given by

½F iJ � ¼

or
oR

or
oH

or
oZ

oh
oR

oh
oH

oh
oZ

oz
oR

oz
oH

oz
oZ

2
64

3
75: ð20Þ

The following key results are then obtained by linearizing terms in Eqs. (12)–(18) (see Appendix A for
elaboration on the procedure):

DuðF aA Þ ¼ Dua;A; ð21Þ

Duðwa;AÞ ¼ DuðcabcwbF cAÞ þ cabcw
b
;ADu

c; ð22Þ

Duðui;jÞ ¼ Dðui;jÞ þ ciabu
a
;jDu

b � cajbu
i
;aDu

b; ð23Þ

where c denotes the Christoffel symbol for a general curvilinear coordinate system. It is important to point
out that linearization of the terms associated with the weighting function w (see Eq. (22)) is trivial in a
Cartesian coordinate system. Assuming a hyperelastic material model, Gint

1 formulated in a cylindrical
coordinate system can be linearized as

DGint
1 ¼ DuGint

1 ¼
Z

X0

wi;jc
jl
ikDu

k
;l dX0|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

material term

þ
Z

X0

wa;jgais
jkDui;k dX0 þ

Z
X0

wrshhDur dX0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
conventional geometric term

þ 2

Z
X0

rwh
;ks

hkDur dX0 þ 2

Z
X0

rwrshkDuh
;k dX0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

additional geometric term

; ð24Þ

where cjlik are the mixed components of the fourth order spatial elasticity tensor, and s refers to the Kir-
chhoff stress tensor, to be discussed further in Section 4. Appendix A can again be consulted for more
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details on the derivation of Eq. (24). The additional geometric terms in the above equation are due to the
aforementioned linearization of wi;I , and are necessary to obtain robust and rapid convergence behavior.

The second term in Eq. (12) can be rewritten in the reference geometry as

Gint
2 ¼

Z
X0

wip;iJ dX0: ð25Þ

Linearizing this term gives

DGint
2 ¼

Z
X0

wiDp;iJ dX0 �
Z

X0

wip;aDua;iJ dX0 þ
Z

X0

wip;iDuk;kJ dX0: ð26Þ

Considering now Gint
3 , one can write

Gint
3 ¼

Z
X0

qvi;iJ dX0: ð27Þ

Taking the directional derivative gives

DGint
3 ¼

Z
X0

qDvi;iJ dX0 �
Z

X0

qvi;aDu
a
;iJ dX0 �

Z
X0

1

r2
qvrDurJ dX0 þ

Z
X0

qvi;iDu
j
;jJ dX0: ð28Þ

Applying a backward Euler difference approximation to represent the solid velocity term, this equation can
be rewritten as

DGint
3 ¼ 1

Dt

Z
X0

qDui;iJ dX0 �
1

Dt

Z
X0

ðuinþ1;a � uin;aÞDua;iJ dX0 �
1

Dt

Z
X0

1

r2
qðurnþ1;a � urn;aÞDurJ dX0

þ 1

Dt

Z
X0

qðuinþ1;i � uin;iÞDu
j
;jJ dX0: ð29Þ

Finally, f int
4 can be represented in reference coordinates via

Gint
4 ¼

Z
X0

q;ikijp;jJ dX0: ð30Þ

Assuming an isotropic permeability tensor with a constant permeability coefficient k0, this term is linearized
as

DGint
4 ¼

Z
X0

q;ik0d
ijDp;jJ dX0 �

Z
X0

q;ak0d
jkp;jDua;kJ dX0 �

Z
X0

q;ak0d
abp;kDuk;bJ dX0

þ
Z

X0

q;ik0d
ijp;jDua;aJ dX0: ð31Þ

4. Hyperelastic modeling of the solid phase

In the examples to be considered in this work, the above nonlinear formulation is considered in con-
junction with a Neo-Hookean hyperelastic material model for the solid phase, defined by the following
equation

W ðIC; JÞ ¼ 1
2
lðIC � 3� 2lnJÞ þ 1

2
kðJ � 1Þ2; ð32Þ

where IC ¼ trC and J 2 ¼ det C are the first and third invariants of the right Cauchy–Green deformation
tensor C. The second Piola–Kirchhoff stress is then given by
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SAB :¼ oW
oCAB

¼ lðGAB � ðC�1ÞABÞ þ kJðJ � 1ÞðC�1ÞAB; ð33Þ

where CAB :¼ gabF aA F
b
B are the covariant components of the right Cauchy–Green deformation tensor, and

GAB are the contravariant components of the metric tensor in material coordinates. The Kirchhoff stress,
which is a push forward of the second Piola–Kirchhoff stress, is defined as

sab ¼ lðbab � gabÞ þ kJðJ � 1Þgab; ð34Þ
where bab :¼ GABF aA F

b
B are the contravariant components of the left Cauchy–Green deformation tensor, and

gab are the contravariant components of the metric tensor in spatial coordinates. Components of the spatial
elasticity for this material model tensor are given by

cjlik ¼ kJð2J � 1Þgji glk þ J
l
J

�
� kðJ � 1Þ

�
ðgikgjl þ gli g

k
j Þ: ð35Þ

Most aspects of the finite element implementation of this model are straightforward once the fully
coupled linearization of the weak form is developed, as was done in the last section. The interested reader
should consult standard references on the analogous problem of fully nonlinear thermoplasticity (Simo and
Miehe, 1992) for details pertaining to element programming. We defer discussion of these details here, other
than to remark that in a finite element context, a matrix form of the material moduli is much more con-
venient for numerical computation than is the fourth order tensor representation of material stiffness.
Accordingly, the material stiffness term in Eq. (24) can be rewritten in an equivalent form

wi;jc
jl
ikDu

k
;l ¼ ½rw�TvectD½rðDuÞ�vect; ð36Þ

where the indicated vector representations of rw and rðDuÞ are given (using rðDuÞ as an example) via

½rðDuÞ�vect :¼ Dur;r Duh
;h Duz;z Duh

;z Duz;r Dur;h Duh
;r

h iT
: ð37Þ

With these definitions, the reduced index representation of the neo-Hookean moduli is

D ¼

c1 þ c2 c1 c1 0 0 0 0
c1 c1 þ c2 c1 0 0 0 0
c1 c1 c1 þ c2 0 0 0 0
0 0 0 0:5r2c2 0 0 0
0 0 0 0 0:5c2 0 0
0 0 0 0 0 0:5 1

r2 c2 0:5c2
0 0 0 0 0 0:5c2 0:5 1

r2 c2

2
666666664

3
777777775
; ð38Þ

where c1 ¼ kJð2J � 1Þ þ 2Jðl=J � kðJ � 1ÞÞ and c2 ¼ 2:0Jðl=J � kðJ � 1ÞÞ. Note that in a finite defor-
mation torsional formulation, the unknown displacement in the h direction is taken to be in radians, as
opposed to being the out of plane displacement in a small strain formulation. This leads to the fact that
ur;h 6¼ uh

;r, meaning that the matrix D is 7� 7 instead of 6� 6.

5. Numerical and experimental investigation of torsional relaxation

The theoretical formulation described above has been used to predict the stress-relaxation behavior of
articular cartilage as an example of a biphasic material, subjected to torsional deformation. A uniform
mesh (Fig. 2) having 50 bilinear elements in the radial direction was used to model one-quarter of the
axisymmetric cylindrical sample depicted in Fig. 1. The boundary conditions and material constants were
chosen to represent torsion of a cylindrical sample of articular cartilage, similar to experiments performed
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in our laboratory. The baseline parameters used to simulate the torsion experiment are provided in Table 1.
The boundary conditions demand that at the upper and lower surfaces of the disk, the material be con-
strained in the z direction, be free to displace in the r direction, and that there be no fluid flux (i.e., the
testing platens are impermeable). Angular deformation as depicted in Fig. 3 was applied to the upper
surface to produce the desired magnitude of shear strain (c0 ¼ 0:1) and the lower surface was fixed. Sen-
sitivity studies were performed to determine the effect of individual parameters on the total axial stress (see
Table 1). In Study A, the shear modulus of the solid matrix was varied over a range of three orders of
magnitude, while in Study B, the magnitude of the shear strain applied to the biphasic material was varied
from small to finite strain. In Study C, the effect of the variation in permeability over four orders of
magnitude was studied. In Study D, the effect of sample aspect ratio was investigated.

The parametric studies were used to determine the ability of the FE code to model nonlinear, biphasic
material behaviors and were motivated by experimentally observed results for nonlinear coupled shear and

Table 1

Parametric cases studied with the nonlinear torsional FEM code

t0 ðsÞ d=h ks ðMPaÞ ls ðMPaÞ h0 k0 ðm4/NsÞ
Case A 0.05 10 0.1 0.1, 1.0, 5.0 0.1 10�14

Case B 0.05 10 0.1 0.1 0.02, 0.1, 0.2 10�14

Case C 0.05 10 0.1 0.1 0.1 10�14, 10�15, 10�16, 10�17

Case D 0.05 10, 7, 3 1.0 0.1 0.1 10�14

Fig. 3. The load curve.

Fig. 1. Geometry of cylindrical sample modeled here. h denotes the angle of torsional displacement imposed to achieve shear strain c.

Fig. 2. The finite element mesh modeling an r–z cross section of the sample.
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normal stress effects in articular cartilage. Torsional experiments were performed on samples of articular
cartilage from the tibial plateau of the canine knee joint, as described previously (LeRoux et al., 2000).
Cylindrical samples were tested using a strain-controlled rheometer that allowed simultaneous acquisition
of torque and normal force on the upper surface of the sample. The samples were compressed between
impermeable, adhesive platens under strains of 12% and 20% to clamp the sample for complete torque
transfer and to ensure uniform contact. The samples underwent shear deformation applied in a fast ramp
(60 ms) to apply a shear strain of 0.10. For characterization of the stress-relaxation behaviors, the shear and
normal stress data were individually fit to a single exponential model (c ¼ c0 þ c1e�t=s) for the first 100 s of
stress relaxation, providing the peak stress response ðc0 þ c1Þ and characteristic time constant s of decay.

5.1. Numerical results

The finite element code was observed to predict a nonlinearly coupled shear and normal stress-relaxation
process. The model predicted rapid fluid pressurization in response to torsional deformation, which slowly
decayed after a period of maintained pressurization. The normal (or axial) stress slowly increased from
zero, as the total stress in the material was transferred from the fluid to the solid phase.

5.1.1. Parametric study results: case A
In general, increasing the shear modulus resulted in a decrease in the fluid pressure relative to the

equilibrium shear stress, although the absolute magnitude of the fluid pressurization was higher for the
materials with higher moduli (Fig. 4). The same trend was observed with respect to the effective normal
stress (Fig. 5). The fluid pressure also decayed slightly more rapidly as the modulus increased. The peak
pressure was the same for all cases when normalized to the equilibrium shear stress.

Fig. 4. Effect of shear modulus on fluid pressure, p0 ¼
R
pdA=ðA0 � s0Þ, where s0 is the maximum equilibrium shear stress and A0 is the

area of the sample top surface.
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5.1.2. Parametric study results: case B
These results demonstrated that the magnitude of the shear strain affected the magnitude of the total

stress and effective normal stress predicted to occur in the sample (Figs. 6 and 7). The total stresses gen-
erated in the axial direction were low for small strains (h0 ¼ 0:02). With increasing shear strains, nonlinear
effects in the axial direction developed. For the highest shear strain applied, (h0 ¼ 0:2), the peak total stress
was one-fourth of the shear stress.

5.1.3. Parametric study results: case C
Decreasing the permeability was observed to linearly increase the period of fluid pressurization (Figs. 8

and 9). The pressure decayed to 80% of the peak pressure by 1000 s for k ¼ 1� 10�14 m4/N s, while the
pressure required 1� 106 s to decay the same amount for k ¼ 1� 10�17 m4/N s. The permeability does not
affect the final value of stress, but it does affect the time to reach equilibrium, with smaller permeability
coefficients requiring longer times.

5.1.4. Parametric study results: case D
The effect of sample aspect ratio on response was studied in these simulations (Figs. 10 and 11). With the

increase of the aspect ratio, the relative fluid pressure and decay time increase as a result of the longer path
for fluid exudation in the radial direction. The effective normal stress acts differently over most of the
simulation time, with high aspect ratios leading to lower relative effective normal stresses. However, for
very late times in the relaxation process, the curves cross, reversing this trend.

5.2. Nonlinear torsional experimental testing of articular cartilage

The experimental data from a typical cartilage sample shows the coupled shear and normal stress
response following torsional deformation (Fig. 12). The normal stress from the tests performed with

Fig. 5. Effect of shear modulus on normal stress, rs0
zz ¼ �

R
rs
zz dA=ðA0 � s0Þ, where s0 is the maximum equilibrium shear stress and A0 is

the area of the sample top surface.
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impermeable platens is believed to correspond to the normalized total stress traction as predicted here. The
peak normal stress was generally an order of magnitude less than the peak shear stress (Table 2). In 4=10

Fig. 6. Effect of shear strain on total stress, r0
zz ¼

R
ðp � rs

zzÞdA=ðA0 � s0Þ, where s0 is the maximum equilibrium shear stress and A0 is

the area of the sample top surface.

Fig. 7. Effect of shear strain on axial normal stress, rs0
zz ¼ �

R
rs
zz dA=ðA0 � s0Þ, where s0 is the maximum equilibrium shear stress and A0

is the area of the sample top surface.
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cases, the time constant for relaxation in shear was greater than that for the normal stress. However, the
mean values for the shear and normal time constants were not significantly different (Table 2). The time

Fig. 8. Effect of permeability on total stress, r0
zz ¼

R
ðp � rs

zzÞdA=ðA0 � s0Þ, where s0 is the maximum equilibrium shear stress and A0 is

the area of the sample top surface.

Fig. 9. Effect of permeability on normal stress, rs0
zz ¼ �

R
rs
zz dA=ðA0 � s0Þ, where s0 is the maximum equilibrium shear stress and A0 is

the area of the sample top surface.
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constants from the fits of experimental data were short, averaging about 0.5–5 s, much less than the time for
decay predicted by the computational results of at least 100 s.

Fig. 10. Effect of aspect ratio on fluid pressure, p0 ¼
R
pdA=ðA0 � s0Þ, where s0 is the maximum equilibrium shear stress and A0 is the

area of the sample top surface.

Fig. 11. Effect of aspect ratio on normal stress, rs0
zz ¼ �

R
rs
zz dA=ðA0 � s0Þ, where s0 is the maximum equilibrium shear stress and A0 is

the area of the sample top surface.
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6. Conclusion

A torsional axisymmetric finite element formulation for large strain biphasic behavior has been devel-
oped, which predicts that fluid pressurization occurs simultaneously with shear stress generation when a

Fig. 12. Experimental stress relaxation of articular cartilage subjected to torsional deformation with t0 ¼ 60 ms, d=h ¼ 11:2, l ¼ 103

kPa and a compressive offset strain of 20%: (a) the normalized shear stress is calculated as the maximum shear stress (i.e., s @ r ¼ d=2)
divided by the equilibrium shear stress, (b) the normalized normal stress was calculated as the measured axial force divided by sample

area A0, and normalized to the equilibrium shear stress. Note that the normal stress is shown as the change from the equilibrium

compressive offset stress.

Table 2

Experimental results for torsion of articular cartilage with c0 ¼ 0:1 and d=h ¼ 7:4� 2:4 (mean� SD)

compressive offset

strain

l ðkPaÞ Shear Normal

Peak shear stress (kPa) s (s) Peak normal stress (kPa) s (s)

12% n ¼ 9 26:8� 17:1 6:1� 3:6 0:44� 0:17 0:80� 0:50 1:2� 0:96

20% n ¼ 10 46:0� 28:9 9:5� 5:5 0:57� 0:39 1:20� 1:90 4:3� 8:16
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material undergoes shear deformation at finite strain levels. This effect, which is observed experimentally
and which cannot be predicted using kinematically linear models, is felt to be important in the successful
prediction and understanding of time dependent load-bearing behaviors of articular cartilage.

The finite element formulation consists of a nonlinear hyperelastic material model, torsional axisym-
metric strain displacement matrices, and a novel linearization of the weak form of the variational equa-
tions. The predictions obtained from this model describe qualitatively the experimentally observed transient
evolution of the normal stress that evolves in torsion testing of articular cartilage. The finite element results
suggest that the total normal stress arises predominantly from fluid pressurization during the majority of
the stress-relaxation process, and exhibits significant stresses in the normal direction that are nevertheless
smaller than their experimentally observed counterparts.

The permeability of articular cartilage is on the order of 10�15 m4/N s (Armstong and Mow, 1982).
According to the finite element simulations, performed with properties similar to those determined from
experimental tests of cartilage, the theory overpredicts the time needed for stress relaxation. The low values
for shear moduli and permeability coefficient determined from experiment are among the factors con-
tributing to the discrepancy in decay times. If the experimentally determined properties are indeed repre-
sentative of the true behavior of articular cartilage, then constitutive laws other than the Neo-Hookean
model used here may be needed to reconcile experiment and finite element predictions, and will be the
focus of future work. Furthermore, a more sophisticated nonlinear constitutive model is necessary, perhaps
incorporating intrinsic viscoelasticity of the solid phase, to simulate the transient shear stress response
observed experimentally.
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Appendix A

In this appendix, we give more details on the derivation of Eqs. (22)–(24). Employing the concept of
covariant differentiation, one may write

Dðwa;Aea � EAÞ ¼ Dðwa;AÞea � EA: ðA:1Þ

Expansion of the left hand side of this equation leads to

Dðwa;Aea � EAÞ ¼ Dðwa;AÞea � EA þ wa;ADea � EA ¼ ðDðwa;A þ cabcw
bF cAÞ þ cabcw

b
;ADu

cÞea � EA: ðA:2Þ

Since w is a weighting function, we have that Dðwa;AÞ ¼ 0. Comparison of Eqs. (A.1) and (A.2) leads to
Eq. (22). Following the same concept, Eq. (23) can also be derived.

From Eq. (18), we can write

DðGint
1 Þ ¼

Z
X0

Dðwi;IF iJ SJIÞdX0

¼
Z

X0

wi;IF iJDðSJIÞdX0 þ
Z

X0

wi;IDðF iJÞSJI dX0 þ
Z

X0

Dðwi;IÞF iJSJI dX0: ðA:3Þ
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A straightforward manipulation yields thatZ
X0

wi;IF iJDðSJIÞdX0 ¼
Z

X0

wi;jc
jl
ikDu

k
;l dX0; ðA:4Þ

and Z
X0

wi;IDðF iJ ÞSJI dX0 ¼
Z

X0

wa;jgais
jkDui;k dX0 þ

Z
X0

wa;jgais
jkciklDu

l dX0 þ
Z

X0

cajlw
lgaisjkDui;k dX0

þ
Z

X0

cajmw
mgaisjkciknDu

n dX0: ðA:5Þ

Using Eq. (22), we can derive the following identity for a cylindrical coordinate systemZ
X0

Dðwi;IÞF iJSJI dX0 þ
Z

X0

wa;jgais
jkciklDu

l dX0 þ
Z

X0

cajlw
lgaisjkDui;k dX0

þ
Z

X0

cajmw
mgaisjkciknDu

n dX0 ¼
Z

X0

wrshhDur dX0 þ 2

Z
X0

rwh
;ks

hkDur dX0 þ 2

Z
X0

rwrshkDuh
;k dX0: ðA:6Þ

Combining Eqs. (A.3)–(A.6), we can verify that Eq. (24) holds.
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