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Abstract

In this paper, we present a finite element formulation for describing the large deformation torsional response of
biphasic materials, with specific application to prediction of nonlinear coupling between torsional deformation and fluid
pressurization in articular cartilage. Due to the use of a cylindrical coordinate system, a particular challenge arises in the
linearization of the weak form. The torsional axisymmetric case considered gives rise to additional geometric terms,
which are important for the robustness of the numerical implementation and that would not be present in a Cartesian
formulation. A detailed derivation of this linearization process is given, couched in the context of a variational for-
mulation suitable for finite element implementation. A series of numerical parametric studies are presented and
compared to experimental measurements of the time dependent response of cartilage. © 2002 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Articular cartilage is a porous, hydrated material that exhibits flow-dependent viscoelastic effects when
loaded, including interstitial fluid pressurization and fluid flow (Mow et al., 1980; Soltz and Ateshian, 2000,
1998). Compositionally, articular cartilage consists of a polymeric solid phase of largely collagen and
proteoglycan macromolecules, and interstitial fluid phase consisting largely of water and dissolved solutes.
The mechanical behaviors of this tissue have been well described by a multiphasic theoretical formulation
(Bowen, 1998; Truesdell and Toupin, 1960) that accounts for mechanical interactions between these solid
and fluid phases (Mow et al., 1980). Analytical solutions of the biphasic theoretical model have been shown
to capture important physical characteristics of cartilage when subjected to compressive loading in sim-
plified one and two-dimensional axisymmetric configurations (Mow et al., 1980; Armstong et al., 1986;
Mak et al., 1987). Finite element implementations of the linear biphasic theoretical model or linear
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poroelasticity have also been developed to study articular cartilage in more complex loading configurations
and sample geometries (Spilker et al., 1990; Suh et al., 1991; Levenston et al., 1998; Wayne et al., 1991). All
of these codes have demonstrated an ability to predict important flow-dependent viscoelastic behaviors for
cartilage when subjected to compressive loading.

Cartilage is also known to exhibit significant viscoelastic effects in response to torsional shear (Hayes and
Mockros, 1973; Zhu et al., 1995; Setton et al., 1995). Within linear theory, the solid matrix of cartilage is
predicted to experience zero dilatation for small angles of deformation, and so will not experience any
associated flow-dependent effects such as fluid pressurization and fluid flow. Thus, the viscoelastic effects
observed in torsional shear have been attributed to a flow-independent mechanism arising from physical
interactions between polymeric molecules of the solid phase (Hayes and Mockros, 1973; Mak, 1986).
Recently, experimental studies have demonstrated that a significant, transient normal force may be gen-
erated in articular cartilage when subjected to pure torsion in either steady shearing or stress-relaxation
testing (LeRoux et al., 1999, 2000). In these experiments, cylindrical axisymmetric samples of articular
cartilage were subjected to torsional displacements while the axial, or normal force was recorded for the
duration of this prescribed torsional loading. A significant, nonzero normal stress was generated in re-
sponse to torsional deformation that is hypothesized to contribute to load-bearing mechanisms for the
tissue. The kinetics of the normal force transients are similar to the shear stress transients in the stress-
relaxation experiment (LeRoux et al., 1999), suggesting that a coupling mechanism exists between visco-
elastic effects in pure torsion and normal stress. In linear theory, the rotation is always decoupled from
radial and axial displacements, however, with the result that a linear formulation of the pure torsion
problem always generates zero dilatation and zero pressure in a biphasic material. In this paper, we present
a novel finite element formulation of the finite deformation axisymmetric torsional problem to investigate
the coupling between torsional and normal stress effects in a biphasic material.

In applying the finite element technique to a biphasic analysis, at least three different types of formu-
lations have been implemented: two field solid displacement-fluid velocity penalty formulations (Spilker
et al., 1990; Suh et al., 1991); two field solid displacement-fluid pressure formulations (Wayne et al., 1991);
and multifield variational formulations (Levenston et al., 1998) with a Lagrangian multiplier (Almeida,
1995) or augmented Lagrangian multiplier approach. In the current study, a two field displacement—
pressure formulation (u—p formulation) is used to study the torsional behavior of biphasic soft tissues,
which precludes the need to invoke penalizations or Lagrange multipliers. In contrast to most of the above
studies, we consider the full finite strain response of the solid matrix in this study. A challenge in the tor-
sional axisymmetric finite element formulation we consider comes from the linearization of the weak form.
In a curvilinear coordinate system, the process not only involves the linearization of the components of
relevant tensors but also the linearization of variable bases, which will generate additional terms in the
geometric stiffnesses (a simplified treatment of these terms is presented in (Celigoj, 1998). To our knowl-
edge, these terms have not been incorporated in previous finite element formulations describing the finite
deformation behavior of biphasic materials. Omitting these terms in the torsional problem will, in general,
cause a loss of quadratic rates of convergence of the Newton—-Raphson method while solving the nonlinear
system of discrete equations. In the current work, we present a detailed derivation of the formulation and
its linearization, and demonstrate that the resulting numerical tool can be used to predict the coupling
between pure torsion and normal stress effects in articular cartilage.

2. Continuum mechanics preliminaries
A biphasic material is considered to consist of two intrinsically incompressible and immiscible phases,

denoted by a = s, f for solid and fluid phases respectively (Mow et al., 1980). In terms of Cauchy stress, the
momentum equation for the ath phase, in the absence of body forces and inertia effects, is given by
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AV + =0 (1)
with the stress tensor for each individual phase defined as

O-S = _¢Sp1 + 0_57

o' = —¢'pl, 2

where ¢* denotes the current volume fraction of the ath phase, p denotes the fluid pressure and 6° is the
effective stress tensor for the solid matrix of the material. =* is a diffusive drag interaction term, defined as

=KW —v)=—-=n°, (3)

where K is a diffusive drag tensor (Mow et al., 1980). In this formulation, the diffusive drag is related to the
hydraulic permeability tensor as k = (d)f)zK ~!. In a u—p formulation, the balance of linear momentum for
the solid and fluid phases may thus be written as

- gikp,k = 0) (4)

o = i, (5)

where ¢V are the contravariant components of the effective stress in the solid phase (the superscript e has
been dropped for convenience) p is the fluid pressure, g are the contravariant components of the metric
tensor, and v/ := ¢f (v — p()7) are the contravariant components of the relative fluid velocity. In Egs.
(4) and (5), and in the sequel we use indicial notation, with repeated indices indicating implied summation
and the use of the semicolon via (-),; indicating covariant differentiation in a curvilinear coordinate system
(in this case, this coordinate system W111 eventually correspond to an axisymmetric one).

The balance of mass for the ath phase is described by

p* + po = 0. (6)
If one assumes saturation of the biphasic medium, as well as incompressibility, one also obtains:

f s
+¢" =1,

Ll ™)
3

where 7% denotes the reference material density, or intrinsic density, for each phase. Combination of Egs. (6)
and (7) gives rise to the following continuity equation for the biphasic material

(@0 + ¢, = 0 (8)

which is the constraint that typically appears in two field penalty formulations. By contrast, combining the
momentum equation (8) and continuity equation (5) for the fluid phase leads to the equation used in a u—p
formulation such as is employed here,

(' = k'p;),; =0, ©)

where v’ are the contravariant components of the solid phase velocity (again for simplicity, the superscript s
has been dropped). In our formulation, linear permeability is assumed, i.e., the permeability tensor is
defined as k = koI with k, taken to be a constant and I denoting the second order identity tensor.



882 X.N. Meng et al. | International Journal of Solids and Structures 39 (2002) 879-895

3. The biphasic weak form and its linearization

In what follows, let Q denote the current configuration of a biphasic body and Q := Q + 0Q indicate the
closure of Q, where the boundary 0Q can be partitioned as 0Q = I', + I', and 0Q = I', + I'p. We further
assume that I', N I', = 0 and I', N 'y = O (here, () denotes the null space). The notations I', and I', denote
the regions where stresses and displacements (respectively) are specified on the boundary; correspond-
ingly, I', and I'y are the regions where fluid pressures and fluxes are prescribed. The smooth manifold of
admissible solutions is then defined by

2:={uxp:Q — Qur, =upr, = p}. (10)
Correspondingly, we define ¥~ € H'(Q) as the space of test functions associated with 2, via
v i={wxq:Q — Qwr, =0 qr, =0} (11)

Application of the standard weighted residual procedure to Egs. (4) and (9) leads to the following (coupled)
weak form

/ wiya” dQ + / wig"p;dQ = / wit'dI’ (12)
Q Q ;
and
/ qu,dQ + / qk'p,;dQ = — / qQdr, (13)
Q Q I'o
where w and ¢ are the trial functions standing in the weighting space, and # = ¢Yn; and Q = —kYp ;n; are the

prescribed traction and fluid flux fields, respectively. In subsequent developments, it will prove convenient
to summarize the coupled system summarized by Egs. (12) and (13) via

G + Gyt = / wit'dT,
’ (14)
o+ Gt =~ [ qoar.
I'o
where Gi" and G refer to the first and second terms in Eq. (12), while G and G are the first and second
terms in Eq. (13).
When a Newton—Raphson procedure is chosen to solve this problem, a linearization of the weak form is
required. Specifically, given an iterate i for the solution, denoted by (u', p’), we solve linearized systems for
displacement and pressure increments (Au, Ap) according to

Gilnt(ui,pi) + AGilm(ui,pi) + Gizllt(ui7pi) + AGizm(ui,pi) _/ W,—ti dr = 0’
| | | | ; (15)
G3'(u',p) + AGS (o', p) + G (o, p) + AG (', p') + / qQdI' =0,
o
where AH denotes the sum of the directional derivatives of the functional H in the directions of Au and Ap
via

d d
AH =AH+AH=—| H A il
w + By de |e=0 (e u’p)+de —0

H(u,p+ eAp). (16)
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Following solution of Eq. (15) for Au and Ap, the solution is updated via
ui+1 — ui +All, pi+l :pi +Ap (17)

and iterations on i are continued until convergence is obtained. A key intricacy of the implementation we
present is the proper calculation of the linearizations indicated in Eq. (15). We now consider the lineari-
zation of these terms in detail.

In terms of the material configuration, GI" can be rewritten as

Gilnt :/ ijT{on =/ Wi;IFJiSJIde %)
Q 2

where S are the contravariant components of the second Piola—Kirchhoff stress tensor, t/ = J¢/ are the
components of the Kirchhoff stress tensor, and J is the Jacobian of the deformation gradient. As em-
phasized in (Marsden and Hughes, 1994), the definition of deformation gradient is in terms of the partial
derivative instead of a covariant derivative, which is expressed as
.ox

Fl = o (X), (19)
where X’ and x’ denote the reference and spatial coordinate systems respectively. For a cylindrical coor-
dinate system, with (R, ©,Z) and (r, 0,z) denoting the reference and spatial coordinates, the deformation
gradient in matrix form is given by

OR 00 4

in_ | o o
[E/] —|or d© 0z |° (20)

0z Oz 0z

oR 00 0Z

The following key results are then obtained by linearizing terms in Eqs. (12)—(18) (see Appendix A for
elaboration on the procedure):

A(F)) = A, (21)
A(wy) = AW F}) + 7w A (22)
A,(u) = A(uly) + 7 ul A’ — youl Au®, (23)

where y denotes the Christoffel symbol for a general curvilinear coordinate system. It is important to point
out that linearization of the terms associated with the weighting function w (see Eq. (22)) is trivial in a
Cartesian coordinate system. Assuming a hyperelastic material model, G" formulated in a cylindrical
coordinate system can be linearized as

AGilm = AuGilm :/ w’jc{,ﬁAukl dQ, —|—/ wf}gair’kAufk dQ, —|—/ WA dQ,

Q Q Q
material term conventional geometric term
+ 2/ i % AumdQ, + 2/ w % Auf, dQy, (24)
[ Qo

additional geometric term

where cl’,i are the mixed components of the fourth order spatial elasticity tensor, and t refers to the Kir-
chhoff stress tensor, to be discussed further in Section 4. Appendix A can again be consulted for more



884 X.N. Meng et al. | International Journal of Solids and Structures 39 (2002) 879-895

details on the derivation of Eq. (24). The additional geometric terms in the above equation are due to the
aforementioned linearization of w;,, and are necessary to obtain robust and rapid convergence behavior.
The second term in Eq. (12) can be rewritten in the reference geometry as

Gt = / wipJdQy. (25)
Q
Linearizing this term gives
AGM :/ wAp,J dQy —/ wp Al dQ, +/ w"p,,-Auf‘deQo. (26)
Q Qo Qo
Considering now G, one can write
G = / quv'J dQ. (27)
Qo
Taking the directional derivative gives
AG13nt — / qAUlleQO — / qDlaAualeQO — r—zqv’ AurJdQO + / qulAu/deQO (28)
Qo Q Q Qo

Applying a backward Euler difference approximation to represent the solid velocity term, this equation can
be rewritten as

AGy = 1 [ a0, - - /g (W )0 40— < /Q U L, )M 40,
* é /QO Gty — ty,,) Aty Q. )
Finally, f;" can be represented in reference coordinates via
G :/Q q.:k"p ;J dQy. "
o

Assuming an isotropic permeability tensor with a constant permeability coefficient kg, this term is linearized
as

AG™ = / q.k°8" Ap J dQy — / 4.k p ;AT dQy — / 4.k p p it T A
Q Q

Q)

+/ q‘ikoéi"p‘jAuf’aJon. (31)
Q

4. Hyperelastic modeling of the solid phase

In the examples to be considered in this work, the above nonlinear formulation is considered in con-
junction with a Neo-Hookean hyperelastic material model for the solid phase, defined by the following
equation

W(le,J) = u(le — 3 = 2InJ) +40(J — 1), (32)

where I = trC and J? = det C are the first and third invariants of the right Cauchy—Green deformation
tensor C. The second Piola—Kirchhoff stress is then given by
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ow
~ 0Cyp

where Cyp := guF9F) are the covariant components of the right Cauchy-Green deformation tensor, and
G*8 are the contravariant components of the metric tensor in material coordinates. The KirchhofT stress,
which is a push forward of the second Piola—Kirchhoff stress, is defined as

o = (b — ) + 1 — 1), (34)

where b := G'®FF} are the contravariant components of the left Cauchy-Green deformation tensor, and
g¢® are the contravariant components of the metric tensor in spatial coordinates. Components of the spatial
elasticity for this material model tensor are given by

i = 2020 = Dglg+J (5= 20 = 1) (eng” + gl)). (35)

N

= (G — (") + (- (C?, (33)

Most aspects of the finite element implementation of this model are straightforward once the fully
coupled linearization of the weak form is developed, as was done in the last section. The interested reader
should consult standard references on the analogous problem of fully nonlinear thermoplasticity (Simo and
Miehe, 1992) for details pertaining to element programming. We defer discussion of these details here, other
than to remark that in a finite element context, a matrix form of the material moduli is much more con-
venient for numerical computation than is the fourth order tensor representation of material stiffness.
Accordingly, the material stiffness term in Eq. (24) can be rewritten in an equivalent form

lecfliAukl = [VW]ICCID[V(Au)}VeCt’ (36)
where the indicated vector representations of Vw and V(Au) are given (using V(Au) as an example) via
T
V(Au)),.. = {Au;’r Au;eﬁ Au; Aui A, Auy Auﬂ . (37)
With these definitions, the reduced index representation of the neo-Hookean moduli is
_Cl —+ ¢ C| Cq 0 0 0 0 T
C1 cto C 0 0 0 0
C1 Ci cr+o 0 0 0 0
D= 0 0 0 0.5%¢; 0 0 0 , (38)
0 0 0 0 0.5¢, 0 0
0 0 0 0 0 05%c; 0.5c
.| 0 0 0 0 0 0.5¢; 0.5%¢; |

where ¢; = AJ(2J — 1) +2J(u/J — A(J — 1)) and ¢, =2.0J(u/J — A(J — 1)). Note that in a finite defor-
mation torsional formulation, the unknown displacement in the 0 direction is taken to be in radians, as
opposed to being the out of plane displacement in a small strain formulation. This leads to the fact that
uly # u,, meaning that the matrix D is 7 x 7 instead of 6 x 6.

5. Numerical and experimental investigation of torsional relaxation

The theoretical formulation described above has been used to predict the stress-relaxation behavior of
articular cartilage as an example of a biphasic material, subjected to torsional deformation. A uniform
mesh (Fig. 2) having 50 bilinear elements in the radial direction was used to model one-quarter of the
axisymmetric cylindrical sample depicted in Fig. 1. The boundary conditions and material constants were
chosen to represent torsion of a cylindrical sample of articular cartilage, similar to experiments performed
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s
“I

1 I
Fig. 1. Geometry of cylindrical sample modeled here. 0 denotes the angle of torsional displacement imposed to achieve shear strain 7.

Fig. 2. The finite element mesh modeling an r—z cross section of the sample.

Table 1
Parametric cases studied with the nonlinear torsional FEM code
t (s) d/h /s (MPa) u, (MPa) 6o ko (m*/Ns)
Case A 0.05 10 0.1 0.1, 1.0, 5.0 0.1 10~14
Case B 0.05 10 0.1 0.1 0.02, 0.1, 0.2 10714
Case C 0.05 10 0.1 0.1 0.1 10714, 10715, 10716, 107
Case D 0.05 10, 7,3 1.0 0.1 0.1 10~

in our laboratory. The baseline parameters used to simulate the torsion experiment are provided in Table 1.
The boundary conditions demand that at the upper and lower surfaces of the disk, the material be con-
strained in the z direction, be free to displace in the r direction, and that there be no fluid flux (i.e., the
testing platens are impermeable). Angular deformation as depicted in Fig. 3 was applied to the upper
surface to produce the desired magnitude of shear strain (y, = 0.1) and the lower surface was fixed. Sen-
sitivity studies were performed to determine the effect of individual parameters on the total axial stress (see
Table 1). In Study A, the shear modulus of the solid matrix was varied over a range of three orders of
magnitude, while in Study B, the magnitude of the shear strain applied to the biphasic material was varied
from small to finite strain. In Study C, the effect of the variation in permeability over four orders of
magnitude was studied. In Study D, the effect of sample aspect ratio was investigated.

The parametric studies were used to determine the ability of the FE code to model nonlinear, biphasic
material behaviors and were motivated by experimentally observed results for nonlinear coupled shear and

Fig. 3. The load curve.
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normal stress effects in articular cartilage. Torsional experiments were performed on samples of articular
cartilage from the tibial plateau of the canine knee joint, as described previously (LeRoux et al., 2000).
Cylindrical samples were tested using a strain-controlled rheometer that allowed simultaneous acquisition
of torque and normal force on the upper surface of the sample. The samples were compressed between
impermeable, adhesive platens under strains of 12% and 20% to clamp the sample for complete torque
transfer and to ensure uniform contact. The samples underwent shear deformation applied in a fast ramp
(60 ms) to apply a shear strain of 0.10. For characterization of the stress-relaxation behaviors, the shear and
normal stress data were individually fit to a single exponential model (¢ = ¢ + c¢;e /%) for the first 100 s of
stress relaxation, providing the peak stress response (cy + ¢;) and characteristic time constant 7 of decay.

5.1. Numerical results

The finite element code was observed to predict a nonlinearly coupled shear and normal stress-relaxation
process. The model predicted rapid fluid pressurization in response to torsional deformation, which slowly
decayed after a period of maintained pressurization. The normal (or axial) stress slowly increased from
zero, as the total stress in the material was transferred from the fluid to the solid phase.

5.1.1. Parametric study results: case A

In general, increasing the shear modulus resulted in a decrease in the fluid pressure relative to the
equilibrium shear stress, although the absolute magnitude of the fluid pressurization was higher for the
materials with higher moduli (Fig. 4). The same trend was observed with respect to the effective normal
stress (Fig. 5). The fluid pressure also decayed slightly more rapidly as the modulus increased. The peak
pressure was the same for all cases when normalized to the equilibrium shear stress.

.03 ey

——  u=0.1Mpa
-——-- pu=1 Mpa
- == n=5 Mpa

0.025

0.02-

0.015

NORMALIZED AVERAGE PRESSURE

0.005

TIME (s)

Fig. 4. Effect of shear modulus on fluid pressure, p = [pdd4/(4y X 79), where 1 is the maximum equilibrium shear stress and 4, is the
area of the sample top surface.
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0.012 T T T T T T

0.008 -

0.006 -

0.004 -

NORMALIZED AVERAGE AXIAL STRESS

0.002 -

Fig. 5. Effect of shear modulus on normal stress, o3, = — f as.d4/(Ay % 19), where 7y is the maximum equilibrium shear stress and 4, is
the area of the sample top surface.

5.1.2. Parametric study results: case B

These results demonstrated that the magnitude of the shear strain affected the magnitude of the total
stress and effective normal stress predicted to occur in the sample (Figs. 6 and 7). The total stresses gen-
erated in the axial direction were low for small strains (6y = 0.02). With increasing shear strains, nonlinear
effects in the axial direction developed. For the highest shear strain applied, (6y = 0.2), the peak total stress
was one-fourth of the shear stress.

5.1.3. Parametric study results: case C

Decreasing the permeability was observed to linearly increase the period of fluid pressurization (Figs. 8
and 9). The pressure decayed to 80% of the peak pressure by 1000 s for k =1 x 107" m*/N's, while the
pressure required 1 x 10° s to decay the same amount for £k = 1 x 107 m*/N's. The permeability does not
affect the final value of stress, but it does affect the time to reach equilibrium, with smaller permeability
coefficients requiring longer times.

5.1.4. Parametric study results: case D

The effect of sample aspect ratio on response was studied in these simulations (Figs. 10 and 11). With the
increase of the aspect ratio, the relative fluid pressure and decay time increase as a result of the longer path
for fluid exudation in the radial direction. The effective normal stress acts differently over most of the
simulation time, with high aspect ratios leading to lower relative effective normal stresses. However, for
very late times in the relaxation process, the curves cross, reversing this trend.

5.2. Nonlinear torsional experimental testing of articular cartilage

The experimental data from a typical cartilage sample shows the coupled shear and normal stress
response following torsional deformation (Fig. 12). The normal stress from the tests performed with
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impermeable platens is believed to correspond to the normalized total stress traction as predicted here. The
peak normal stress was generally an order of magnitude less than the peak shear stress (Table 2). In 4/10
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cases, the time constant for relaxation in shear was greater than that for the normal stress. However, the
mean values for the shear and normal time constants were not significantly different (Table 2). The time
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Fig. 10. Effect of aspect ratio on fluid pressure, p' = [pdd4/(4y X 10), where 1 is the maximum equilibrium shear stress and 4, is the
area of the sample top surface.
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Fig. 11. Effect of aspect ratio on normal stress, 0. = — [ ¢%.dA4/(4y x 1), where 7, is the maximum equilibrium shear stress and 4, is
the area of the sample top surface.

constants from the fits of experimental data were short, averaging about 0.5-5 s, much less than the time for
decay predicted by the computational results of at least 100 s.
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Fig. 12. Experimental stress relaxation of articular cartilage subjected to torsional deformation with ¢ = 60 ms, d/h = 11.2, p = 103
kPa and a compressive offset strain of 20%: (a) the normalized shear stress is calculated as the maximum shear stress (i.e., T @ r = d/2)
divided by the equilibrium shear stress, (b) the normalized normal stress was calculated as the measured axial force divided by sample
area A, and normalized to the equilibrium shear stress. Note that the normal stress is shown as the change from the equilibrium
compressive offset stress.

Eigl:erifnental results for torsion of articular cartilage with y, = 0.1 and d/h = 7.4 £ 2.4 (mean £ SD)
compressive offset u (kPa) Shear Normal
strain Peak shear stress (kPa) T (s) Peak normal stress (kPa) T (s)
12%n=9 268 +17.1 6.1+3.6 0.44+0.17 0.80 +0.50 1.2 +£0.96
20% n =10 46.0 £28.9 9.5+55 0.57+0.39 1.20 +£1.90 43+8.16

6. Conclusion

A torsional axisymmetric finite element formulation for large strain biphasic behavior has been devel-
oped, which predicts that fluid pressurization occurs simultaneously with shear stress generation when a
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material undergoes shear deformation at finite strain levels. This effect, which is observed experimentally
and which cannot be predicted using kinematically linear models, is felt to be important in the successful
prediction and understanding of time dependent load-bearing behaviors of articular cartilage.

The finite element formulation consists of a nonlinear hyperelastic material model, torsional axisym-
metric strain displacement matrices, and a novel linearization of the weak form of the variational equa-
tions. The predictions obtained from this model describe qualitatively the experimentally observed transient
evolution of the normal stress that evolves in torsion testing of articular cartilage. The finite element results
suggest that the total normal stress arises predominantly from fluid pressurization during the majority of
the stress-relaxation process, and exhibits significant stresses in the normal direction that are nevertheless
smaller than their experimentally observed counterparts.

The permeability of articular cartilage is on the order of 107> m*/N's (Armstong and Mow, 1982).
According to the finite element simulations, performed with properties similar to those determined from
experimental tests of cartilage, the theory overpredicts the time needed for stress relaxation. The low values
for shear moduli and permeability coefficient determined from experiment are among the factors con-
tributing to the discrepancy in decay times. If the experimentally determined properties are indeed repre-
sentative of the true behavior of articular cartilage, then constitutive laws other than the Neo-Hookean
model used here may be needed to reconcile experiment and finite element predictions, and will be the
focus of future work. Furthermore, a more sophisticated nonlinear constitutive model is necessary, perhaps
incorporating intrinsic viscoelasticity of the solid phase, to simulate the transient shear stress response
observed experimentally.
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Appendix A

In this appendix, we give more details on the derivation of Egs. (22)—(24). Employing the concept of
covariant differentiation, one may write

AW e, @ E') = A(W!))e, @ E*. (A.1)
Expansion of the left hand side of this equation leads to

A(wlie, ® EY) = A(W!)e, @ E* + wi Ae, @ E* = (A(W*) + 73 W'F) + 7wl Auf e, @ E*. (A.2)
Since w is a weighting function, we have that 4(w?) = 0. Comparison of Egs. (A.1) and (A.2) leads to

Eq. (22). Following the same concept, Eq. (23) can also be derived.
From Eq. (18), we can write

A(G™M) = /Q A(wi FiS) dQy
0

_ / W FIA(S")dQo + / W A(FS” dQq + / A(wir)FiS” dQy. (A.3)
Q Q

Q
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A straightforward manipulation yields that
/ Wi;]EJiA (SJI) dQy = / ijcziliAu{(l d€, (A4)
Q Q ’
and

/w,-;IA(I*“Ji)SJ’dQO:/ wf}g,,,—rﬂ‘Aufdeo—f—/ wf}gairjkyj(lAulon+/ y?,wlgairjkAufdeo
Q 2 Q9 Q

+ / VW gt ), Au" dQp. (A.5)
Q
Using Eq. (22), we can derive the following identity for a cylindrical coordinate system

/A(Wi;l)FJiSJIdQO‘F/ le/'gairjky;;lAuldQO_F/ V?/ngaifjkA”[deO
o o : ,

Q

Wt A dQ, + 2/ rwf’krm‘Au’ dQ, + 2 rw"fﬁkAuf)k dQ,. (A.6)

Q Q

+/ VoW it ), A" dQ :/
Q

Qo

Combining Egs. (A.3)—(A.6), we can verify that Eq. (24) holds.
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